Games Achievements My Kong Sign In

Imk0tter's Comments

Comment

Rotatix

Play Rotatix

Sep. 16, 2013

Rating: -1

360 / (1321 / (floor(91378113792060 / 1321^(n-1)) - (floor(91378113792060 / 1321^n) * 1321)))

Rotatix

Play Rotatix

Sep. 16, 2013

Rating: -1

360 / (621 / (floor(8927936587640 / 621^(n-1)) - (floor(8927936587640 / 621^n) * 621)))

Rotatix

Play Rotatix

Sep. 15, 2013

Rating: -2

eNqN0EsOwjAMBNDrlAXR+Bc7p/GmZ+D8pIWIBWlAI80qftJko+ruTLbhkSgaoODGdVbZokazNE5KjMNUZO3hRM/B3FEquXhAY1KDIYq1g2JT4Jty/SUxzC9mvWpQYWtKCo6HYJXr+kxcYHv/KYr/PBKpTVSTz6Xcp78xnLk9AW/mamM=

Rotatix

Play Rotatix

Sep. 15, 2013

Rating: -1

360 / (5248 / (floor(10266488332778790553479 / 5248^(n-1)) - (floor(10266488332778790553479 / 5248^n) * 5248)))

Rotatix

Play Rotatix

Mar. 26, 2013

Rating: 1

the function is 360 / (x / (x - (floor(y / (2*x)^(n-1)) - (floor(y/ (2*x)^n) * (2*x))))) where x is the target number of sides and y is an integer between (2x)^(armcount - 1) and (2x)^armcount

Rotatix

Play Rotatix

Mar. 26, 2013

Rating: -2

84^9*

Rotatix

Play Rotatix

Mar. 26, 2013

Rating: -2

82584417727601376*

Rotatix

Play Rotatix

Mar. 26, 2013

Rating: -1

for the one below, you can change 6541999387669452 to any integer between 0 and 42^10 and it will always give a drawing that has 42 sides (with 9 arms)

Rotatix

Play Rotatix

Mar. 26, 2013

Rating: -1

this function is for 9 arms: 360 / (42 / (42 - (floor(82584417727601376 / (2*42)^(n-1)) - (floor(82584417727601376 / (2*42)^n) * (2*42)))))

Rotatix

Play Rotatix

Mar. 26, 2013

Rating: 0

360 / (856 / (856 - (floor(6541999387669452 / (2*856)^(n-1)) - (floor(6541999387669452 / (2*856)^n) * (2*856)))))

Rotatix

Play Rotatix

Mar. 24, 2013

Rating: 0

put this function in the box (you can change 13 to any number - it will give a drawing with the side count you specify in this case 13) this is for 4 arms 360 / (13 / ((2^(9-1)-1) - (floor(47585803387 / (2^(9*(n-1)))) - (floor(47585803387 / (2^(9*n))) * (2^9)))))

Rotatix

Play Rotatix

Oct. 04, 2011

Rating: 0

eNqV0LsNwzAMBNB17CLCkeJP07DJDJk/dAxXkRUEB1wlPuC0YcMr0SRAwYNtVjnCYmgqJyXI3J1JU5BW4UTlYB5oRt49IDGpiyGKtYOmU+CbcvklMdRvZp11UaFrqjccD8HS7yvrnsgCNXLBPeuvKP4UeboVn+xvqxdqSw==

Rotatix

Play Rotatix

May. 25, 2011

Rating: 0

http://www.hawkee.com/scripts/18469920/

Rotatix

Play Rotatix

May. 20, 2011

Rating: 1

360 / (sideCount / (127 - (((floor(x / (2^(8*(n-1)))) / (2^8)) - floor(floor(x / (2^(8*(n-1)))) / (2^8))) * (2^8)))) this is an interesting formula, basically for every value of x, there is a unique drawing for the given number of sides (represented by sidecount). the maximum value of x is 2^(8*armCount) if you want to see what the ratios are you can use 360 as the side count for any given integer for example if the value of x is 2205452392, the ratios for 4 arms would be: 23 -9 11 4 360 / (360 / (127 - (((floor(2205452392 / (2^(8*(n-1)))) / (2^8)) - floor(floor(2205452392 / (2^(8*(n-1)))) / (2^8))) * (2^8))))

Rotatix

Play Rotatix

May. 20, 2011

Rating: 0

360 / (39.1 / (127 - (((floor(1787724417 / (2^(8*(n-1)))) / (2^8)) - floor(floor(1787724417 / (2^(8*(n-1)))) / (2^8))) * (2^8)))) 4 arms

Rotatix

Play Rotatix

May. 17, 2011

Rating: 3

360 / (43.083333 / (15 - (((floor(551186 / (2^(5*(n-1)))) / (2^5)) - floor(floor(551186 / (2^(5*(n-1)))) / (2^5))) * (2^5))))

Rotatix

Play Rotatix

May. 17, 2011

Rating: 3

Here's an interesting formula ;) You can change 36.1 to any value you'd like (Designed for 4 arms) 360 / (36.1 / (15 - (((floor(745066 / (2^(5*(n-1)))) / (2^5)) - floor(floor(745066 / (2^(5*(n-1)))) / (2^5))) * (2^5))))

Developers Players Support YouTube TikTok X (Twitter) LinkedIn
Join the conversation Join Discord
Terms of Service Privacy Policy Code of Conduct
© 2025 Kongregate